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Extremal optimization is a new general-purpose method for approximating solutions to hard optimization
problems. We study the method in detail by way of the computationally fdR¢hard graph partitioning
problem. We discuss the scaling behavior of extremal optimization, focusing on the convergence of the average
run as a function of run time and system size. The method has a single free parameter, which we determine
numerically and justify using a simple argument. On random graphs, our numerical results demonstrate that
extremal optimization maintains consistent accuracy for increasing system sizes, with an approximation error
decreasing over run time roughly as a power laW“ On geometrically structured graphs, the scaling of
results from theveragerun suggests that these are far from optimal with large fluctuations between individual
trials. But when only théestruns are considered, results consistent with theoretical arguments are recovered.
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[. INTRODUCTION “where the really hard problems arg15]. In fact, prelimi-
Optimizing a system of many variables with respect tonary studies of the phase transition in the three-coloring
some cost function is a task frequently encountered in physproblem[16] as well as studies of ground-state configura-
ics. The determination of ground-state configurations in distions in spin glassep3,17] suggest that EO may become a
ordered material§1—4] and of fast-folding protein confor- useful tool in the exploration of low-temperature properties
mations]5] are but two examples. In cases where the relatiorPf disordered systems.
between individual components of the system is frustrated In the present work we focus on the intrinsic features of
[6], the cost function often exhibits a complex “landscape” the method by investigating its average performance. For this
[7] in configuration space, posing challenges to neighborpurpose, we have conducted an extensive numerical study of
hood search procedures. Indeed, for growing system size tHeO on the graph bipartitioning problem. We consider various
cost function may exhibit a rapidly increasing number ofkinds of graph ensembles, both with geometric and with ran-
unrelated local extrema, separated by sizable barriers thdom structure, for an increasing number of vertiéesThe
can make the search for the exact optimal solution unreasotiesults show that for random graphs, EO converges towards
ably costly. It is of great importance to develop fast andthe optimal configuration in a power-law manner, typically
reliable approximation methods for finding optimal or ac-requiring no more thar©(N) update steps. For geometric
ceptable near-optimal solutions with high probability. graphs the averaged largefesults are less convincing, but
In recent papers we have introduced a new method, callef we instead focus on the best out of several trials, near-
extremal optimizatiofEO), to tackle such hard optimization optimal results emerge. Our implementation of EO has one
problems[8,9]. EO is based on the dynamics of nonequilib- single tunable parameter, and we find a simple relation to
rium processes and in particular those exhibiting self-estimate that parameter given the allowed run time and sys-
organized criticality10], where better solutions emerge dy- tem size. Many of our numerical results here have been in-
namically without the need for parameter tuning. Previouslydependently confirmed by D&IL8].
we have discussed the basic EO algorithm, its origin, and its The paper is organized as follows. In Sec. Il we introduce
performance compared with other methods. We have demorihe graph bipartitioning problem, and in Sec. Il we describe
strated that the algorithm can be adapted to a wide variety dhe extremal optimization algorithm. Section IV deals in de-
computationally hard problenjg1]. We have shown that for tail with our numerical results. In Sec. V we conclude with
the graph partitioning problem, a simple implementation ofan outlook on future work.
EO vyields state-of-the-art solutions, even for systemd of
>10° variableq 8]. For large graphs of low connectivity, EO Il. GRAPH BIPARTITIONING
has been shown to be faster than genetic algoriftir@lsand
more accurate than simulated annealifig], two other
widely applied methods. A numerical stufi¥4] has shown The graph bipartitioning probledtGBP) is easy to formu-
that EO’s performance relative to simulated annealing is partate. TakeN vertices, wheréN is an even number and where
ticularly strong in the neighborhood of phase transitionssome of the vertex pairs are connected by an edge. Then
divide the vertices into two sets of equal meashi¥f@ such
that the number of edges connecting both sets, the “cut size”
*Electronic address: shoettc@emory.edu m, is minimized. The global constraint of an equal division
Electronic address: percus@lanl.gov of vertices makes the GBP an NP-hard problem, i.e., deter-

A. Definition
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mining the exact solution with certainty would in general 1
require a computational effort growing faster than any power
of N [19]. It is thus important to find “heuristic” methods
that can obtain goo@dpproximatesolutions in polynomial
time. Typical examples of applications of graph partitioning
are the design of integrated circud¢LSI) [20] and the par-
titioning of sparse matrice1].

The general description of a graph in the previous para-os
graph is usually cast in more specific terms, defining an en-
semble of graphs with certain characteristics. These charac
teristics can affect the optimization problem drastically, and
often reflect real-world desiderata such as the geometric lay
out of circuits or the random interconnections in matrices.
Therefore, let us consider a variety of different graph en-
sembles, some random and some geometric in structure. 0;

B. Classes of graphs studied FIG. 1. A geometric graph wittN=500 vertices and average

One class of graphs that has been studied extensively fMectivitya=6, partitioned into 250 square and 250 circle ver-
tices. Starting from an initial random assignment of squares and

tsr:reuglg:\l e,[g)Z] T_F;:I a?r]: ergggc:)rgtvgéiﬂh;nﬂwggﬁ‘ tﬂzovrgfttiggscircles, EO arrives at near-optimal configurations consisting of do-

; . . o . mains of squares and circles, separated by an interface across which
is taken to exist with probability; on the average, an in- “bad” edges (thickened linesconnect poorly adapted vertices.
stance has a total gfN(N—1)/2 edges and the mean con-
nectivity per vertex isx=p(N—1). Following standard ter- final two classe426]. The characteristics of the GBP for
minology we refer to graphs of this sort as the ensemble ohongeometric and geometric graphs at low connectivity ap-
random graphseven though the other classes of graphs wepear to be very different due to the dominance of long loops
consider all have stochastic properties as well. in the former and short loops in the latter. The ensemble of
Another often-studied class of graphs without geometricandom graphs has a structure that is locally treelike, allow-
structure is generated by placing connections randomly, butg for a mean-field treatment that yields some exact results
fixing the numbeix of connections at each vertg3,24. In  [25]. By contrast, the ensemble of geometric graphs corre-
particular, we consider the caae=3: the ensemble dfiva-  sponds to continuum percolation of “softloverlapping
lent graphs randomly connected graphs with exactly threecircles, for which precise numerical results eXia7].
edges originating from each vertex. Each of the graph ensembles that we consider is charac-
The third class we consider is an ensembith geometric  terized by a control parameter, the average connectivity
structure, where the vertices are situated on a cubic latticélhe difficulty of the optimization problem for each type var-
Edges are placed so as to connect sdmg not al) nearest ies significantly witha. In this study we focus on sparse
neighbors on the lattice; a fractiom of all nearest- graphs for whicha is kept constant, independent of.
neighboring pairs are occupied by an edge, and those edg&parse graphs have very different properties from the dense
are distributed at random over the possible pairs. For a cubigraphs studied by Fu and Anderd@8]. These sparse graphs
lattice, the average connectivity is then givenday 6x. This  are generally considered to pose the most difficult partition-
class of graphs corresponds to a dilute ferromagnet, wheii@g problems, and our EO algorithm is particularly competi-
each lattice site holds a--spin and some(but not al)  tive in this regimg14]. In order to facilitate a study of EQO’s
nearest-neighboring spins possess a coupling of univerage performance, we fix to a given value on each
strength. Here, the GBP amounts to the equal partitioning oénsemble. For random graphs, where the connectivity varies
+ and — spins while minimizing the interface between the among vertices according to a Poisson distribution, dix
two types[25], or simply finding the ground state under fixed =p(N—1)=2. For trivalent graphs, by constructien=3.
(zero magnetization. We refer to this class as the ensembl€or ferromagnetic graphs, fixx=6x=2. For geometric
of ferromagnetic graphs graphs, fixae=N=d?=6. In all of these cases, the connec-
The final class we consider is that of geometric graphsivity is chosen to be just above the phase transitioa at,
specified byN randomly distributed vertices in the two- below which the cut sizen almost always vanishelsl4].
dimensional unit square, with edges between all vertex pair§hese critical regions are especially interesting because they
separated by a distance of no more tlidi26]. The average have been found to coincide with the hardest-to-solve in-
connectivity isa=N7d?. The GBP on this class of graphs stances in many combinatorial optimization problems
has the advantage of a simple visual representation, shown ji5,29.
Fig. 1. Again following standard terminology, we refer to this  Finally, in light of the numerous comparisons in the phys-
class simply as the ensemble ggometric graphs ics literature between the GBP and the problem of finding
It is known that graphs without geometric structure, suchground states of spin glasskl, it is important to point out
as those in the first two classes, are typically easier to optithe main difference. This is highlighted by the ensemble of
mize than those with geometric structure, such as those in tferromagnetic graphs. Since couplings between spins are
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purely ferromagnetic, all connected spins invariably wouldproblems, works better for geometric graphs than for random
like to be in the same state; there is no local frustrationgraphg31]. METIS performs particularly well for sparse geo-
Frustration in the GBP arises merely from tgbal con-  metric graphs, and typically produces better results than EO
straint of an equal partition, forcing spins along an interfacefor «= 6. Furthermore, if speed is the dominant requirement,
to attain an unfavorable statsee Fig. 1 All other spins  METIS is superior to any local search method by at least a
reside in bulk regions where they can maintain the same statactor of N. But for random graphs at=2 or the trivalent

as their neighbors. In a spin glass, on the other hand, cographsMETIS results are poor compared to EO’s, and for all
plings can be both ferromagnetic and antiferromagnetictype of graphsveTis’ performance deteriorates with increas-
Spins everywhere have to compromise according to conflicting connectivity.

ing conditions imposed by their neighbors; frustration is lo-

cal rather than global. IIl. EXTREMAL OPTIMIZATION ALGORITHM

. . A. Motivation
C. Basic scaling arguments

If we neglect the fact that the structure of sparse graphs is The extremal optimization method originates from in-
: . Sights into the dynamics of nonequilibrium critical phenom-
that of percolation clusters, we can obtain some elementar
Q:;gf\ﬁfl]nfﬁ é?ee agi)l%ecstiezi\l’scglfﬁss hlai“(;lrorg(r);;gi (;attlr?;iltcumechanisnBZ], which was_introduced to describe the dy-
geometric structurdrandom graph ensemble and trivalent namics ,Of cp-evolvmg SPECIES. .
graph ensemble one can expect that the cut size should Species in the Bak-Sneppen mo“d.el arenlocated on the sites
grow linearly inN, i.e., »=1. Indeed, this argument can be of a lattice, and each one has a “fitness” represented by a
made rigorous for arbitrary fixed connectivity. Extremal  vValue between 0 and 1. At each update step, the smallest
optimization performs very well on these graphs, and previvalue (representing the most poorly adapted spedteslis-
ous numerical studies using EO all give-1 [14]. carded and replaced by a new value drawn randomly from a
For graphs with geometric Structu(’brromagnetic graph flat distribution On[O,l]. Without any interaCtionS, all the
ensemble and geometric graph ensembifee value ofy is  fitnesses in the system would eventually approach 1. But
less clear. We can approximate a graph withdimensional —obvious interdependencies between species provide con-
geometric structure as a hypercubic lattice of lengith straints for balancing the system’s overall condition with that
=N where the lattice sites are the vertices of the graptof its members: the change in fitness of one species impacts
and the nearest-neighbor bonds are the edges, of which ontiie fitness of an interrelated species. Therefore, at each up-
a finite fraction are occupied. There are thubl edges in the date step, the Bak-Sneppen model replaces the fitness values
graph. To partition it, we are roughly looking for a on the sitemeighboringthe smallest value with new random
(d—1)-dimensional hyperplane cutting the graph into twonumbers as well. No explicit definition is provided for the
equal-sized sets of vertices. Such an interface between thaeechanism by which these neighboring species are related.
partitions would cut-L9"* bonds, and thus-N'~ @ edges.  Nevertheless, after a certain number of updates, the system
Following this argument, the three-dimensioii@D) ferro-  organizes itself into a highly correlated state known as self-
magnetic graphs should have a cut size scaling N#iand  organized criticality[10]. In that state, almost all species
the 2D geometric graphs should have a cut size scaling withave reached a fitness above a certain threshold. Yet these
N2, species merely possess what is called punctuated equilibrium
However, while this may be the case for a typical partition[33]: since only one’s weakened neighbor can undermine
of the graph, it may not be the case for @ptimal partition.  one’s own fitness, long periods of “stasis,” with a fithess
The interface for an optimal cut of a sparse graph could wellbove the threshold, are inevitably punctuated by bursts of
be much rougher than our argument suggests, taking advaaetivity. This co-evolutionary activity cascades in a chain
tage of large voids between clusters of connected verticeseaction (“avalanche” through the system. These fluctua-
The number of cut edges would then be below the estimations can involve any number of species, up to the entire
based on assuming a flat interface, making<l1—1/d. In  system, making any possible configuration accessible. Due to
our previous studies using EO, however, we found 1/ the extremal nature of the update, however, the system as a
~0.75+0.05 for ferromagnetic graphs anav#0.6=0.1 for ~ whole will return to states in which practically all species are
geometric graph§l4], i.e., above the upper bound, and our above the threshold.
newer results do not improve on theseen later in Fig. 6 In the Bak-Sneppen model, the high degree of adaptation
This could indicate that the actual values are close to thef most species is obtained by the elimination of poorly
upper bound, but also that for graphs with geometric strucadapted ones rather than by a particular “engineering” of
ture EO fails to find the optima on instances of increasingoetter ones. While such dynamics might not lead to as opti-
size. mal a solution as could be engineered under specific circum-
Similar behavior has been observed with other localstances, it provides near-optimal solutions with a high degree
search method26], reflecting the fact that sparse geometric of latency for a rapid adaptation response to changes in the
graphs generally pose a much greater challenge than desources driving the system. A similar mechanism, based on
sparse random graphs. In contrast, a heuristic suske@s  the Bak-Sneppen model, has recently been proposed to de-
[30], a hierarchical decomposition scheme for partitioningscribe adaptive learning in the brdig4].

na. In particular, it is modeled after the Bak-Sneppen
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B. Algorithm description of \’s according to Eq(2) and start the process over again.

Inspired by the Bak-Sneppen mechanism, we have deBepe;at _this procedure for_ a number of update steps per run
vised the EO algorithm with the goal of accessing near{Nat is linear in system sizena=AN, and store the best
optimal configurations for hard optimization problems usingr€Sult generated along the way. Note that no scales to limit
a minimum of external control. Previously, we have demondluctuations are introduced into the process, since the selec-
strated that the EO algorithm is applicable to a wide varietyfion follows the scale-free power-law distributidp(k) in

of problems[11,17. Here, we focus on its implementation Ed- (3) and since—unlike in heat bath methods—all moves
for the GBP. are accepted. Instead of a global cost function, the rank-

In the GBP, EC[8] considers each vertex of a graph as anordered list of fitnesses provides the information about opti-
individual variable with its own fitness parameter. It assigngM@l configurations. This information emerges in a self-

to each vertex a “fithess” organized manner merely by selecting with a béminst
badly adapted vertices, rather than ever “breeding” better
Ni=gi/(gi+b), (1)  ones.

where g; is the number of “good” edges connectirigto
other vertices within its same set, abgdis the number of
“bad” edges connecting to vertices across the partition. 1. Definition of fitness

(For unconnected vertices we fix=1.) Note that vertex We now discuss some of the finer details of the algorithm.
has an individual connectivity af;=g;+Db;,, while the over-  rirot of all, we stress that we use the term “fitness” in the
all mean connectivity of a graph is given by=2;a; /N and  gense of the Bak-Sneppen model, in marked contrast to its

C. Discussion

the cut size of a configuration is given by=2;b;/2. meaning in genetic algorithms. Genetic algorithms consider
At all imes an ordered list is maintained in the form of a 3 hopylation of configurations and assign a fitness value to
permutationlT of the vertex labels such that an entire configuration. EO works with only a single con-

e S A e e S\ @) figuration and makes local updates to individual variables
M) =211(2) TNy » within that configuration. Thus, it is important to reiterate
andi =I1(k) is the label of thekth ranked vertex in the list. that EO assigns a fitness to each of the system™H vari-
Feasible configurations haw¢/2 vertices in one set and ables, rather than to the system as a whole.
N/2 in the other. To define a local search of the configuration While the definition of fitness in Eq(l) for the graph
space, we must define a “neighborhood” for each configuraPartitioning problem seems natural, it is by no means unique.
tion within this spacd35]. The simplest such neighborhood N fact, in general the sum of the fitnesses does not even
for the GBP is given by an exchange @ny) two vertices ~represent the cost function we set out to optimize, because
between the sets. With this exchange at each update we c&Ach fitness is locally normalized by the total number of
searchthe configuration space by moving from the current®dges touching that vertex. It may seem more appropriate to
configuration to a neighboring one. In close analogy with thed€fine fitness instead as=g;, the number of “good” con-
Bak-Sneppen mechanism, our original zero-parameter impll€ctions at a vertex, or else as=—b;, which amounts to
mentation of EO simply swapped the vertex with the worstP€nalizing a vertex for its number of “bad” connections. In
fitness,I1(1), with a random vertex from the opposite set both cases, the sum of all the fitnesses is indeed linearly
[8]. Over the course of a run with,,, update steps, the cut 'elated to the actual cost function. The first of these choices
size of the configurations explored varies widely, since eac#fads to terrible results, since almost all vertices in near-
update can result in better or worse fitnesses. Proceeding 8Btimal configurations have only good edges, and so in most
with the gap equation in the Bak-Sneppen mo@S], we  Cased; is simply equal to the connectivity of the vertex. The
define a functiomm(t) to be the cut size of theestconfigu- ~ Se€cond choice does lead to a viable optimization procedure
ration seen during this run up to tinkeBy constructiorm(t) ~ @nd one that is easily generalizable to other problems, as we

is monotonically decreasing, amd(t,.,) is the output of a have shown elseV\_/he[el]. Bgt_f_or the GBP, we find thz_it the
single run of the EO algorithm. results from that fitness definition are of poorer quality than

We find that somewhat improved results are obtained witt0S€ we present in this paper. It appears productive to con-

the following one-parameter implementation of EO. At eachSider all vertices in the GBP on an equal footing by normal-
update step, draw two integers<k, ,k,<N, from a prob- izing their fitnesses by their connectivity as in Ef). so that

ability distribution N\i€[0,1]. Each vertex’s pursuit towards a better fitness si-
multaneously minimizes its own contribution to the total cost
P(k)ck™™ (1<k=N) (3  function, ensuring that EO always returns sufficiently close
to actual minima of the cost function.
for some 7. Then pick the verticed,;=II(k;) and i, Note that ambiguities similar to that of the fitness defini-

=1I(k,) from the rank-ordered list of fitnesses in EQ).  tion also occur for other optimization methods. In general,
(We repeatedly dravik, until we obtain a vertex in the op- there is a large variety of different neighborhoods to choose
posite set fronk,.) Let verticesi, andi, exchange setao  from. Furthermore, to facilitate a local neighborhood search,
matter whatthe resulting new cut size may be. Then, re-cost functions often have to be amended to contain penalty
evaluate the fitnesses for i, i,, and all vertices they are terms. It has long been knowW@6] that simulated annealing
connected to (2 on averagg Finally, reorder the ranked list for the GBP only becomes effective when one allows the
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balanced partition constraint to be violated, using an extraVith the choice of the power-law distribution f&x(k) in Eq.
term in the cost function to represent unbalanced partitions i63), suitably normalized,

the cost function. Controlling this penalty term requires an

additional parameter and additional tuning, which EO (7=1)N"'AN~1 (N—x). 5

avoids. . '
Asymptotically, we find

2. The parameterr
In(A/InN)

N (N—,1<A<N). (6)

Indeed, there is only one parameter, the exponréntthe T~1+
probability distribution in Eq(3), governing the update pro-
cess and consequently the performance of EO. It is intuitivey, course, large higher-order corrections may exist, and
that a value ofr shou]d exist that opt[mizes EO’s average- ynore may well be deviations in the optimakmong differ-
case performance. if is too small, vertices would be picked gt ¢jasses of graphs since this argument does not take into
purely at random with no gradient towards any good parti-ecqynt graph structure or even the problem at hand. Never-
tlon:_s. If 7 is too I_arge, only a small number of vertices Wlth. theless, Eq(6) gives a qualitative understanding of how to
particularly bad fitness would be chosen over and over againy,qoser, indicating, for instance, that it varies very slowly
confining the system to a poor local optimum. Fortunately, ity N andA but will most likely be significantly larger than
we can derive an asymptotic relation that estimates a suitabjg; asymptotic value of unity. Not surprisingly, with the nu-
value for 7 as a function of the allowed run time and the . arical valuesp~ 107 andN~10* used in previous studies,
system sizeN. The argument is actuallpdependenof the e typically have observed optimal performance for1.3
optimization problem under consideration and is base 1 1.6 (see also Ref[18]). Our numerical study of is dis-
merely on the probability distribution in Eq3) and the er-  ¢,sseq in Sec. IV B belovi\We note that in this study we
godicity properties that anse_from It . _often use run times witlA>N to probe the extreme long-
We have observed numerically that the choice of an OPtitime convergence behavior of EO. In that case, @pcan-
mal r_coincides with t_he transi_tion of the EO algorithm from oo po expected to apply. Yet, the optimal val,uemttill
ergodic to nonergodic behavior. But what do we mean by, eases witt, as will be seen in the numerical results in
“ergodic” behavior, when we are not in an equilibrium situ- Sec. IV B and Fig. &).]
ation? Consider the rank-ordered list of fitnesses in (2.
from which we choose the individual variables to be up- 3. Efficient ranking of the fitness values
dated. Ifr=0, we choose variables at random and can reach ] ] ) )
every possible configuration of the system with equal prob- Strictly speaking, the EO aI%orlthm as we have described
ability. EO’s behavior is then perfectly ergodic. Conversely,it has a cost proportional tocN“InN per run. One factor of
if 7 is very large, there will be at least a few variables thatN arises simply from the fact that the run time, i.e., the num-
may never be touched in a finite run timeecause they are ber of update steps per run, is taken to scale linearly with the
already sufficiently fit and high in rark Hence, if there are  SyStém size. The remaining factor o#RInN arises from the
configurations of the system that can only be reached byeqessﬂy to maintain the ordered list of fithesses |n(E):|._
altering these variables first, EO will never explore them andluring each update, on averagey ¥ertices change their
accordingly is nonergodic. Of course, for any finitediffer- fithesses and need_t_o be reordered since the two vertices
ent configurations will be explored by EO with different Chosen to swap partitions are each connected on average to
probabilities. But we argue that phenomenologically, we mayPther vertices. The cost of sequentially ordering fitness val-
describe EO's behavior as ergodic provided that every varites is, in principleNInN. However, to save a factor &f, we
able, and hence every rank on the list, gets selected at led3@ve instead resorted to an imperfect heap ordering of the
once during a single run. There will be a valuercdt which ~ fithess values as described in R]. Ordering a list ofN
certain ranks, and therefore certain variables, will no longePumbers in a binary tree or “heap” ensures that the smallest
be selected with finite probability during a given run time. fithess will be at the root of the tree, but does not provide a
We find that this value of- at the transition to nonergodic Perfect ordering between all of the other members of the list
behavior corresponds roughly with the value at which EO2S @ sequential ordering would. Yet, with high probability
displays its best performance. smaller fltnesses s_t|II reside in _Ievels of the tree closer to the
Assuming that this coincidence indicates a causal relatiofi0t While larger fitnesses reside closer to the end nodes of
between the ergodic transition and optimal performance, wéhe tree. To maintain such a tree only requig§$nN) moves
can estimate the optimalin terms of run timet and sizeN. ~ needed to replace changing fitness values. o
EO uses a run timé,,,=AN, whereA is a constant, typi- _Spemﬂcglly, con5|der_ a list o fitness values. This list
cally much larger than 1 but much smaller thin (For a will fill a binary tree with at mostl maxT 1 levels, where
justification of the run time scaling linearly iN, see Sec. Imax=[10g2(N)] ([x] denotes the integer part of) and |
IV C 2.) We argue that we are at the “edge of ergodicity” =01, - - - Imax, Wherel=0 is the level consisting solely of
when duringAN update steps we have a chance of selectindhe root,|=1 is the level consisting of the two elements

even the highest rank in EO’s fitness likt N, about once, extending from the root, etc. In general, e level contains
so that up to 2 elements, and all levels are completely filled except

for the end-node level,,, which will only be partially
P(k=N)AN~1. (4)  filled in caseN<2'max*1—1. Clearly, by definition, every

026114-5



STEFAN BOETTCHER AND ALLON G. PERCUS PHYSICAL REVIEW E4 026114

(a) Random Graphs at A=512 (b) Trivalent Graphs at A=512
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FIG. 2. Cut size found by EQin units of N) as a function ofr at a fixed value oA=t/N~500, averaged over all runs on all graphs
of a given sizeN. Results are shown fd¢a) random graphgb) trivalent graphs(c) ferromagnetic graphs, arid) geometric graphs. For each
type of graph the minimum shifts very slowly to smaller valuesrdbr increasingN.

fitness on thédth level is worse than its two descendants on  Under some circumstances, it may be possible to maintain
the (+1)th level, although there could be fitnesses on thea partially or even perfectly ordered list at constant cost by
Ith level that are better than some of the other fithesses ousing a hash table. For instance, for trivalent graphs or more
the (I+1)th (or even greaterlevel. Onaverage however, generally fora-valent graphs, each vertéxcan be in only
the fithesses on thih level are always worse than those onone ofa+1 attainable state§;=0,1, ... o and\;=b;/a.
the (I+1)th level, and better than those on the-(L)th  Thus, instead of time-consuming comparisons betwesn
level. fithess values can be hashed into and retrieved from “buck-
Thus, instead of applying the probability distribution in ets,” each containing all vertices with a givén. For an
Eq. (3) directly to a sequentially ordered list, we save anupdate, we then obtain ranks according to &), determine
entire factor of N in the computational cost by using an which bucket that rank points to and retrieve one vertex at
analogougexponentigl probability distribution on théloga-  random from that bucket.

rithmic) number of leveld in our binary tree, Even in cases where the fitness values do not fall neatly
into a discrete set of states, such a hash table may be an
Q(h)ec2” " {o<I=<[log,(N)]+1}. (7)  effective approximation. But great care must be taken with

respect to the distribution of the’'s. This distribution could
From that levell we then choose one of the fitnesses at ook dramatically different in an average configuration and in

random and update the vertex associated with that fitness near-optimal configuration, because in the latter case fit-
value. Despite the differences in the implementations, ouness values may be densely clustered about 1.

studies show that heap ordering and sequential ordering pro-
duce quite similar results. In particular, the optimal value of
7 found for both methods is virtually indistinguishable. But
with the update procedure using the heap, EO algorithm runs The results obtained during a run of a local search algo-
at a cost of jusO(2aNInN). rithm can often be refined using an appropriate startup rou-

4. Startup routines
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FIG. 3. Plot of 7, for trivalent graphs as a function &) log,(A)=log,(t/N) for various fixed values d and(b) 1/log,(N) for various
fixed values ofA=t/N. These data points were determined by performing runs as in fg.&hd finding the minimum of a quartic fit to
data obtained at=1.2, 1.25, 1.3..., 1.95. In(a) the data increase roughly linearly with lg4) in the regime X A<N at fixedN, while
in (b) the data extrapolate roughly toware: 1 for N— o at fixedA, both in accordance with E¢6). For A<1 this scaling appears to break
down, while forA=N the linear scaling happens to remain valid. Note that the valueg,oh (b) correspond to the data points (@ for
log,(A)=5 and 8.

tine. This is an issue of practical importance for any optimi-of the graphN, the run timet, and the parametert. To obtain
zation method[35]. For instance, Ref[26] has explored a statistically meaningful test of the performance of EO,
improvements for the partitioning of geometric graphs bylarge values ofN were chosen; EO performed too well on
initially dividing the vertices of the graph into two geometri- smaller graphs. The maximum value Nfvaried with each
cally defined regiongfor instance, drawing a line through kind of graph, mostly due to the fact that some types re-
the unit square This significantly boosted the performance quired averaging over many more instances, thus limiting the
of the Kernighan-Lin algorithm on the graphs. Such methodsttainable sizes.
are not guaranteed to help, however, simulated annealing The precise instance sizes weke=1022, 2046, 4094,
shows little improvement using a start{6]. Happily, the and 8190 for both random and trivalent grapié=13®
performance of the EO algorithia typically improved with  (=2197), 16(=4096), and 2& =8000) for ferromagnetic
a clever startup routine. graphs; andN=510, 1022, and 2046 for geometric graphs.
Previously, we have explored a startup routine using a
simple clustering algorithn{8], which accomplishes the
separation of the graph into domains not only for geometric .
but also for random graphs. The routine picks a random ver- 10
tex on the graph as a seed for a growing cluster, and recur-
sively incorporates the boundary vertices of the cluster until
N/2 vertices are covered or until no boundary vertices exist
anymore(signaling a disconnected cluster in the grafthe
procedure then continues with a new seed among the remain-

Geometric Graphs

.

10—1 -
ing vertices. Such a routine can substantially enhance EO’s + N=510 *
convergence, particularly for geometrically defined graphs = N=1022
(see Sec. IV C B In this paper, though, we didot use any o+ N=2046

startup procedure because we prefer to focus on the intrinsic
features of the EO algorithm itself. Instead, all the results

Fraction of near-best Runs

presented here refer to runs starting from random initial par- 107
titions, except for a small comparison in Sec. IV C 3. 1.2 13 14 15 16 1.7
T
IV. NUMERICAL RESULTS FIG. 4. Fraction of EO runs on geometric graphs that have come

within 20% of the best ever foundor each instandeas a function
of 7 for each value ofN. Maxima indicate optimal choice af for

In our numerical simulations, we considered the fourfinding a few good results among many runs. These maxima occur
classes of graphs introduced in Sec. Il. For each class, w&t higher values of than the minima corresponding to best average
have studied the performance of EO as a function of the sizperformance in Fig. 2.

A. Description of EO runs
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(a) Random Graph (b) Trivalent Graph
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FIG. 5. Log-log plot of the cut size as a function of the number of update sfepa single(large instance of da) random,(b) trivalent,
(c) ferromagnetic, an¢d) geometric graph. The solid line represemif) for a single run, and the shaded line with error bars represents the
average(m(t)) over all runs on that instance. I@ and (b), error bars are very small, indicating that there are only small run-to-run
fluctuations abou¢m(t)). By contrast, in(c) and(d), these run-to-run fluctuations are huge. In fact, for the geometric grafah we have
plotted two separate solid lines representing two selected runs, one poor and one good one. This shows the large variations between runs tha

lead to the large error bars.

For each class of graphs, we generated a number of instancessults on the value chosen. In Figsa)22(d) we show how

at each value di: 32 for random and trivalent graphs, 16 for the average cut size depends gngiven a fixed run time.
ferromagnetic graphs, and 64 for geometric graphs. For eachhere is a remarkable similarity in the qualitative perfor-
instance, we conducted a number of EO runs: 8 for randormance of EO as a function of for all types and sizes of
and trivalent graphs, 16 for ferromagnetic graphs, and 64 fographs. Despite statistical fluctuations, it is clear that there is
geometric graphs. Finally, the run timeumber of update 3 distinct minimum for each class and that, as expected, the
stepg used for each run wakn,=AN, with A=512 for  yegylts get increasingly worse in all cases for smaller as well
random graphsA=4096 for trivalent graphsA=1000 for g larger values of.

ferromagnetic graphs, ankl=2048 for geometric graphs. While the optimal values for are similar for all types of
_ graphs, there is a definite drift towards smaller values of
B. Choosing 7 for increasingN. Studies on spin glass¢47] have led to

In previous studies, we had chosen 1.4 as the optimal Similar observations, supporting the argument for the scaling
value for all graphs. In light of our discussion in Sec. Il C 2 of 7 that we have given in Sec. Ill C 2. Our data here do not
on how to estimate, here we have performed repeated runscover a large enough range M to analyze in detail the
over a range of values of on the instances above using dependence of on InN. However, we can at least demon-
identical initial conditions. The goal is to investigate numeri- strate that the results for trivalent graphs, where statistical
cally the optimal value forr, and the dependence of EQ’s errors are relatively small, are consistent with Ej.above.
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For fixedN but increasing values dA=t/N, we see in Fig. Averaged vs best results
3(a) that the optimal value of appears to increase linearly
as a function of IA in the regime XA<N. At the same
time, fixing A and increasind, we see in Fig. @) that the 0.10 o= =0
optimal value ofr appears to decrease linearly as a function

of 1/InN towards a value near=1. Thus, for =A<N, 7
seems to be converging very slowly towards 1, with a finite
N correction of ~InA/InN. This is in accordance with our
estimate, Eq(6), discussed earlier in Sec. Il C fNote that

at A=500 in Figs. 2a) and 2Zb), the optimal values for ran-
dom and trivalent graphs are closets 1.3, consistent with 0.01 f\\zilo
Eq. (6). In contrast, in our long-time studies below=N

and a value of=1.45 seems preferable, consistent with Fig.

Cut size/N

3@ ] 000 0000
The foregoing data, including the results plotted in Figs. ! N !

2(a)—2(d), arise from averageam(t)) over all runs(denoted e

by (---)) and all instancegdenoted by an overbarBut it is F!G. 6. Log_—log plot of the cut sizém), averaged over all runs

important to note that the conclusions drawn with respect t@nd instancesfilled symbols, and the best cut size,; from all

the optimal value of- from these plots are valid only if there "UNS on an instance, averaged over all instariopen symbols

is little difference between the average r{m(t)) and the  TNis is shown for randomQ), trivalent (), ferromagnetic ¢ ),

best runmy. for a particular instance. While this is the case 21 9eometric graphs’y) as a function of siz&\. The error bars

for the random and trivalent graphs, there is a Significanf:efer only to run-to-runland not instance-to-instancBuctuations.

difference betweerm(t)) andm for’ instances of ferro- or random and trivalent graphs, both average and best cut sizes
best scale linearly inN, as expected. For ferromagnetic and geometric

Ir{}acgr;et:c ?nd gfeometrlc gfaphs' a::_ls dGISt(): ulssed later in Seé‘faphs, the best results are several standard deviations better than
- In fact, for geometric graphs-ig. elow, average the average results, with a widening gap for increasihgn the

and best cut sizes often differ by a factor of 2 or 3. Figuregeometric graphs. The scaling of,..~NY gives v=1.3 for fer-

2(d) indicates that the optimal value of for the average omagnetic graphs, and is consistent with=2 for geometric
performance on geometric graphs of site-2046 is below  graphs.
7=1.2. If we instead plot the fraction of runs that have come,
say, within 20% of the best valumy found by EO(which _
most likely is still not optimal for each instance, the optimal does not in |t§elf cpnverge._lnstead, we ha\_/e to keep track of
choice for shifts to larger valuesr~1.3 (see Fig. 4 the bestcpnflguratlon ob_talned so far during a run. Thus,
We may interpret this discrepancy as follows. At smaller®Ven for timest <tp, during an EO run, we refer to the cut
values ofr, EO is more likely to explore the basin of many sizem(t) of the current best configuration as the “result” of
local minima but also has a smaller chance of descending t#at run at time.. Examples of the stepwise manner in which
the “bottom” of any basin. At larger values of, all but a ~ mM(t) converges towards the optimal cut size, for a particular
few runs get stuck in the basin of a poor local minimuminstance of each type of graph, are given in Fig. 5. Up until
(biasing the averagebut the lucky ones have a greater timest~N, m(t) drops rapidly because each update rectifies
chance of finding the better states. For geometric graphs, th@or arrangements created by the random initial conditions.
basins seem particularly hard to escape from, except at theor timest> N, it takes collective rearrangements involving
very low values ofr where EO is unlikely to move toward many vertices tdslowly) obtain further improvements.
the basin’s minimum. Thus, in such cases we find that we get \While during each rurm(t) decreases discontinuously,
better average performan¢e(t)) at a lower value ofr, but  for the random and trivalent graphs the jumps deviate rela-
the best resultn,eg; of multiple runs is obtained at a higher tively little from that of the mean behavior obtained by av-
value of . _ _ eraging over many rung(--)). Fluctuations, shown by the
_Clearly, in order to obtain optimal performance of EO grror bars in Figs. @) and 5b), are small and will be ne-
within a given run time and for a given class of graphs,giected henceforth. For the ferromagnetic and geometric
further study of the best choice afwould be justified. But graphs, these fluctuations can be enormous. In Fig. 6 we

for an analysis of the scaling properties of EO with run time o the average performar(ce) with the best perfor-
andN, the specific details of how the optimalaries are not i )
mancem,eg for each type of graph, at the maximal run time

significant. Therefore, to simplify the following scaling dis- .
cussion, we will fixr to a near-optimal value on each type of tmax @nd averaged over all instances at eadchrhe results
graph. demonstrate that for random and trivalent graphs the average

and best results are very close, whereas for ferromagnetic
and geometric graphs they are far apavith even the scal-
ing becoming increasingly different for the geometric gase
1. General results Therefore, in the following we will consider scaling of the
As explained in Sec. Ill, the cut size of the current con-averageresults for the first two classes of graphs, but prop-
figuration fluctuates wildly at all times during an EO run anderties of thebestresults for the latter two.

C. Scaling behavior
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(a) Random Graphs (b) Trivalent Graph
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FIG. 7. Log-log plot of the average cut sig&N,t,7) as a function of run time at fixed 7= 1.45 for(a) random graphs an) trivalent
graphs. The average is taken over runs as well as over insté8Zésstances for random and 8 instances for trivalent ghajirsor bars

represent instance-to-instance fluctuations only, and increasé\withch more slowly than the mean result. In each chisaecreases from
bottom to top.

2. Random and trivalent graphs We wish to study the scaling properties of the function
Averagingm(t) for anyt over all runs (- - -)) and over in Eq. (8). First of all, we find that generally
all instanceqoverbay, we obtain the average cut size _
m(N,t,7)~NY"m(t/N,7) (t>N>1), (9)
(my=m(N,t,7) (tS)
reflecting the fact that for EO, as well as for most other graph
as a function of siz&\, run timet, and parameter. In Fig. 7 Partitioning heuristics that are based on local search, run
we plotm(N,t,7) for random and trivalent graphs as a func- fimes scale linearly wititN. (This is justified by the fact that
tion of t, for eachN and at a fixed value=1.45 that is near &ach of theN variables only has 2 states to explore. In, say,
the optimal value for the maximal run times,, (see Sec. the traveling salesperson problem, by contrast, eachl of
IV B). The error bars shown here are due only to instance€iti€s can be reconnected @(N) other cities, and so run
to-instance fluctuations and are consistent with a normal digimes typically scale at least with” [37].) In Fig. 8 we plot
tribution around the meariNote that the error bars are dis- M(N,t,7)/N for fixed 7=1.45 as a function of/N. We find
torted due to the logarithmic abscissZhe fact that the indeed that the data points from Fig. 7 collapse onto a single
relative errors decrease witN demonstrates that self- scaling curvem(t/N,7), justifying the scaling ansatz in Eq.
averaging holds and that we need only focus on the mean t®) for v=1. The scaling collapse is a strong indication that
obtain information about the typical scaling behavior of anEO converges irO(N) updates towards the optimal result,

EO run. and also that the optimal cut size itself scales linearlilin
(a) Random Graphs (b) Trivalent Graphs
10°
-\.\\ =145 - - N=8190 =145 - - N=8190
\\ = N=4094 "~ = N=4094
\ . - N=2046 ‘\\ . - N=2046
= \ . + N=1022 = ) s + N=1022
N \ N [}
] N 73 \
S10" | N 5 \
(&) § o N\
"\l l\\!
R N
By —__— g .
1
10° 10" 10° 10' 10° 0 0 1@ 0 100 10
tN tN

FIG. 8. Scaling collapse of the data from Fig. 7 onto a single scaling antt&N,7)=m/N as a function of/N at fixed 7= 1.45 for(a)

random graphs ang) trivalent graphs. For>N, data points are fitted to the power-law expression in(E@). with numerical values given
in Table I.
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TABLE I. Sequence of values of the fit of EGLO) to the data in

Finally, the asymptotic value ofm obtained for the
Fig. 8 fort/N>1 for eachN. Y ymp O(f opt>

trivalent graphs can be compared with previous simulations

Graph type SizaN (From) c y [14,24. There, the “energy’€=— 1+4(My,)/3 was calcu-
lated using the best results obtained for a set of trivalent
Random 1022 0.0423 0.028 0.48 graphs. ReferenciE4] using simulated annealing obtained
2046 0.0411 0.029 0.46 E=—0.840, while in a previous study with E[24] we ob-
4094 0.0414 0.032 0.45 tained €= —0.8441). Our current, somewhat more careful
8190 0.0425 0.034 0.44 extrapolation yields<ﬁ10pt>=0.1158\l or £=-0.8451).

Even though this extrapolation is based on the average data

Trivalent 1022 0.1177 0.052 0.43 -
2045 0.1150 0.057 0.41 rather than only the best of all runs, the very low fluctuations
2094 0'1159 0'062 0'41 between rungsee Figs. th) and § indicate that the result for
: ' ' & would not change significantly. Thus, the replica symmet-
8190 0.1158 0.066 0.40

ric solution proposed in Ref$23,25 for this version of the
GBP, which gives a value of=—2x0.73784/3=0.852,
appears to be excluded.

The scaling functiomm appears to converge at large times

E)Oovtvr:aer l:ﬁrage optimunimog) =(Mop)/N according to a 3. Ferromagnetic and geometric graphs
Unlike on the preceding graphs, EO gives significantly
_ _ t\ 7 different results for an average run and for the best run on
M(t/N, 7)~(Mgpp + C(N) (t>N>1). (100  geometrically structured grapksee Figs. 5 and)6In Fig. 6,

at least the results from the best r(averaged over all in-

i N . stances come close to the scaling behavior expected from
Fitting the data in Fig. 8 to Eq(10} for t/N>1, we obtain the considerations in Sec. Il C: a fit gives=1.3 for ferro-

for each type of graph a sequence of valUegyy, C, andy  magnetic andv~2 for geometric graphs, while the theory
for increasingN given in Table I. In both cases we find predictsy=3/2 andv=2, respectively. But even these best
values for{m,) that are quite stable, while the values for  cut sizes themselves vary significantly from one instance to
slowly decrease witl\. The variation iny as a function oN  another. Thus, it is certainly not useful to study the “aver-
may be related to the fact that for a fixed EO’s perfor-  age” run. Instead, we will consider the result of each run at
mance at fixedA=t/N deteriorates logarithmically witfN,  the maximal run time., extract the best out dfruns, and

as seen in Sec. IV B. Even with this variation, however, thestudy these results as a function of increading

values ofy for both types of graph are remarkably similar:  Figure 9 shows the difficulty of finding good runs with
y~0.4. This implies that in general, on graphs without geo-near-optimal results for increasing sike While for ferro-
metric structure, we can halve the approximation error of EQmagnetic graphs it is possible that acceptable results may be
by increasing run time by a factor of 5—6. This power-law obtained without increasingg dramatically, for geometric
convergence of EO is a marked improvement over the logagraphs an ever larger number of runs seems to be needed at
rithmic convergence conjectured for simulated annealindargeN. It does not appear possible to obtain consistent good
[13] on NP-hard problemg2]. near-optimal results at a fixddfor increasingN.

(a) Ferromagnetic graphs (b) Geometric Graphs

IR
0.012 /

z z
z S 0010
N N
% o010 // 2
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N=2197 == N=1022
= o——o N=2046
0.008
== N=4096 0.005
«—— N=8000
00 02 04 06 08 10 00 02 04 06 08 10
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FIG. 9. Extrapolation plot for the best-&ftrials for (a) ferromagnetic graphs at= 1.4 and(b) for geometric graphs at=1.3. The data
for this plot are extracted from the resultstgt,, averaging the best-df-results over 16 instances for ferromagnetic, and 64 instances for
geometric graphs. For comparison, the left-most data point for Maattk= 16 for ferromagnetic graphs andlat 64 for geometric graphs
corresponds to the “best” results plotted in Fig. 6 for those graphs.
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Best-of—k results sults at short run times improve by a huge amount with such
a procedure, but its advantage is eventually lost at longer run
times. While this procedure is cheap, easy, and apparently
always successful for geometric graphs, our experiments in-
dicate that its effect may be less significant for random
graphs and may actually result giminishedperformance
when used for trivalent graphs in place of random initial
conditions. Clearly, clustering is tailored more toward geo-
metric graphs satisfying a triangular inequality.

0.010

Cut size/N

V. CONCLUSIONS
0005 | @ o« N=2046

Using the classic combinatorial optimization problem of
0.2 0.4 bipartitioning graphs as an application, we have demon-
1/(kn) strated a variety of properties of the extremal optimization
algorithm. We have shown that for random graphs, EO effi-
ciently approximates the optimal solution even at large size
N, with an average approximation error decreasing over run
time t ast %4 For sparse, geometrically defined graphs,
finding the ideal(subdimensionalinterface partitioning of

0.0

FIG. 10. Equivalent run time comparison between different
strategies to improve EO results on geometric graphdNferl022
and 2046 atr=1.3. The horizontal axis is proportional to the in-
verse of the number of updates uség,lk X nXt .. Filled sym-

bols refer to then=1 results for geometric graphs already plotted in - .
Fig. 9b), wherek varies. Open symbols on the dotted lines refer tothe graph becomes ever more difficult as siténcreases.

the k=4 (best-of-fouj results, where varies. Opaque symbols on EO, I'k?t oth_er Iocall seallrch metho@%]’ gets rs]tuck ever
the dashed line refer to=4 results as well, but using initial con- MOr€ often in poor local minima. However, when we con-

ditions generated by a clustering algorititsee Sec. IIIC % At Sider the best out of multiple runs with the EO algorithm, we
sufficiently long run time all strategies are about equal, though witf€COVer results close to those predicted by theoretical argu-
fewer but longer runs having a slight edge over more and shortefMents.
runs for largeN. Even the advantages of a non-random initial con-  We believe that many of our findings here, notably with
figuration become less significant at longer run times. regard to EO’s fitness definition and the update procedure
using the parameter, are generic for the algorithm. Our
We saw in Sec. IV C 2 that for random graphs, computa+esults for optimizing three-coloring and spin glasses appear
tional time is well spent on a few, long EO runs per instanceto bear out such generalizatiof7]. In view of this obser-
We cannot address in detail the question of whether, for geosation, a firmer theoretical understanding of our numerical
metrically defined graphs, computational time is better spenfindings is desirable. The nature of EQO’s performance derives
on k independent EO runs with,,, update steps or, say, on from its large fluctuations; the price we pay for this is the
a single EO run withkt,,,, update steps. While experience loss of detailed balance, which is the theoretical basis for
with our data would indicate the former to be favorable, another physically inspired heuristics, such as simulated an-
answer to this question depends significantlyMmnd, of  nealing[13]. On the other hand, unlike in simulated anneal-
course, on the choice of (see Sec. IV B Here we consider ing, we have the advantage of dealing with a Markov chain
this question merely for a single values= 1.3, for which we  that isindependenof time [38], suggesting that our method
have run EO on the same 64 geometric graphs up to 16 timeggay indeed be amenable to theoretical analysis. We believe
longer thant,,,, usingk=4 restarts. In each of these four that the results EO delivers, as a simple and alternative ap-
runs on an instance we recorded the best result seen at myiroach to optimization, justify the need for further analysis.
tiplesntWith n=1,2,4,8, and 16. For example, the best-
of-four runs atn= 1 of this run time corresponds to the best-
of-k results in Fig. 9 folkk=4, while the best-of-four runs at
n=16 would correspond to the same amount of running time We would like to thank the participants of the Telluride
as k=64. Figure 10 shows that fewer but longer runs areSummer workshop on complex landscapes, in particular
slightly more successful for largéy. Paolo Sibani, for fruitful discussions, and Jesper Dall for
Finally, we have also used the clustering algorithm de-confirming many of our results in his master’s thesis at
scribed in Sec. Il C 4 and Ref8] on this set of 64 graphs Odense University. This work was supported by the Univer-
with 7=1.3. For comparison, we again use the best-of-foursity Research Committee at Emory University, and by an
runs with averages taken at times, ., N=1, 2, and 4. Re- LDRD grant from Los Alamos National Laboratory.
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